REACTION OF ENEHYDRAZINES WITH ACETYLENECARBOXYLIC ESTERS 1

Wolfgang Sucrow*, Wolfgang Turnschek and Ulrich Wolf Fachbereich Chemie, University of Paderborn, D-4790 Paderborn, Germany

<u>Abstract</u> Eight products from reactions of acetylacetone-, methyl acetoacetate- and methyl formylacetate dimethylhydrazones with dimethyl acetylenedicarboxylate and methyl propiolate have been characterized by the usual spectroscopic methods and, partly, structure analyses.

Recent interest in the electrophilic substitution of enehydrazines 2 prompts us to report on own results with the title reactions.

Acetylacetone dimethylhydrazone areacts with dimethyl acetylenedicarboxylate in ethanol to give a 51-mixture of the stereoisomeric compounds $\underline{1}\underline{a}$ and $\underline{1}\underline{b}$ from which the (2,3-E)-isomer $\underline{1}\underline{a}$ can be crystallized (disopropylether), mp 67°C. A solution of pure $\underline{1}\underline{a}$ in deuterochloroform equilibrates back to the above mixture. The configurations of $\underline{1}\underline{a}$ and $\underline{1}\underline{b}$ and the hydrogen bridge were tentatively assigned by the nmr data indicated at the formulae. Additionally, the constitution of $\underline{1}\underline{a}$ has been confirmed by a structure analysis.

Compounds $\underline{1}\underline{a}$ and $\underline{1}\underline{b}$ react with monomethylhydrazine in THF to give the stereo-isomeric pyrazoles $\underline{2}\underline{a}$, \underline{b} (bp 95 and 125°C/0.1 mm Hg) in moderate yield. By-products in the formation of $\underline{1}\underline{a}$, \underline{b} are the cyclobuta[1,2-d]pyrroline $\underline{3}$ the structure of which has been elucidated by an X-ray analysis and a stereoisomer of $\underline{3}$, probably the other 4,5-trans-isomer.

From methyl acetoacetate dimethylhydrazone⁴ in THF only the crystalline $\underline{4}$, mp 76-78°C could be obtained (with dimethyl acetylenedicarboxylate). Methyl propiolate with dimethylhydrazine in ether gave both the known methyl formylacetate dimethylhydrazone⁵ and its reaction product with a second molecule of methyl propiolate, $\underline{5}$, mp 45-46°C. The E-configuration of $\underline{4}$ was deduced from the similar chemical shift of H-2 to that of $\underline{1a}$, $\underline{5}$, however, exhibits a nice coupling constant $J_{2.3}$ = 16.5 cps.

A complex pattern results from the reaction of acetylacetone dimethylhydrazone with methyl propiolate in ethanol. Only cyclic products with a relation of propiolate to hydrazone larger than 1 could be isolated, most of them having lost a CH_3CO -group in the sense of a ketone cleavage, e.g. $\underline{6}$ and $\underline{7}$. The structure of $\underline{6}$ was confirmed by an X-ray analysis. Only traces of the acetyl containing pyridone $\underline{8}$ could be detected by nmr.

The N,N-bond may also be cleaved during the reaction with methyl propiolate leading to a number of pyridines and a pyrrole in trace amounts.

A more detailed discussion of the reactions presented here and of the structure analyses will be given in the full paper.

REFERENCES

- 1. Communication No. 33 in the series "Enehydrazines".
- 2. K.Grohe and H.Heitzer, Liebigs Ann.Chem. 1982, 884, 894.
- 3. N.A.Domnin and S.I.Yakimovich, Zh.Org.Khim. 1, 658 (1965), engl. 658, K.G.Golodova, S.I. Yakimovich and F.Ya.Perveev, ibid. 8, 2488 (7972), engl. 2537.
- 4. T.A.Favorskaya, S.I.Yakımovich and V.A.Khrustalev, ibid. <u>8</u>, 2250 (1972), engl. 2298, H. Ahlbrecht and H.Henk, Chem.Ber. <u>108</u>, 1659 (1975).
- S.A.Giller, A.V.Eremeev, I.Ya.Kalvinsh, V.G.Semenikhina, E.E.Liepinsh, T.M.Kupch and I.S. Yankovskaya, Khim.Geterots.Soedin. 3, 396 (1976), engl. 337, S.I.Yakimovich, I.V.Zerova and N.A.Starygina, Zh Org.Khim. 13, 7168 (1977), engl. 1075.

Acknowledgements. We thank Prof.C.Kruger, Mulheim a d.Ruhr, and Dr.H.D'Amour, Paderborn, for the performance of structure analyses. - Financial support of the Fonds der Chemischen Industrie and the Schering AG Berlin is gratefully acknowledged.

(Received in Germany 13 September 1982)